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ABSTRACT

There has been recent interest in the use of guadtrees
to represent regions in an image. It thus becomes desirable
to develop efficient methods of conversion between gquad-
trees and other types of region representations. This
paper presents an algorithm for converting from guadtrees
to a simple class of boundary codes.
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Circular Model

We will first compute IO and fl for circles.
£
¢
Considering a chord passing through a point at a distance
I from the center of a circle of radius R, rsR (Fig. 5), we have
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This type of boundary representation is called a chain code.
~aneralized chain codes, involving more than four directions,

can also be used. Chain codes provide a very compact region
representation, and make it easy to detect features of the region
boundary, such as sharp turns ("corners®) or concavities. On

the other hand, it is harder to determine properties such as
elongatedness from a chain code, and it is also difficult to per-
form operations such as union and intersection on regions repre-
sented by chain codes. A general introduction to chain codes and
their uses can be found in [1].

Another class of region representations involves various types
of maximal "blocks”™ that are contained in a given region. For
example, we can represent a region R as a linked list of the runs
(of pixels) in which R meets the successive rows of the array [2].
Here each "block" is a l-by-m rectangle, where m is the run
length; the runs are the largest such blocks that R contains,
and R is determined by specifying the initial points (or centers)
and lengths of the runs. Alternatively, we can represent R by
the set of maximal square blocks (or blocks of any other desired
shape) that it contains; here R is determined by specifying the
centers and radii of these blocks. This representation is called

the medial axis transformation, or MAT [(3]). It is somewhat less

compact than chain code (4], but it has advantages with respect

to performing union and intersection operations or detecting




properties such as elongatedness (in terms of the smallness of
the radii relative to the number of centers).

There has been recent interest in an approach to region rep-
resentation based on successive subdivision of the array into
quadrants. If the region does not cover the entire array, we sub-
divide the array, and repeat this process for each quadrant, each
subquadrant,... as long as necessary, until we obtain blocks
{possibly single pixels) that are entirely contained in the
region or entirely disjoint from it. The resulting blocks for
the region of Figure la are shown in Fiqure lb. This process can
be repres~nted by a tree of degree 4 (for brevity: a quadtree)
in which the entire array is the root node, the four sons of a
node are its quadrants, and the leaf nodes correspond to those
blocks for which no further subdivision is necessary.* The gquad-
tree representation for Figure lb is shown in Figure lc. Note
that here again we are representing the region as a union of
maximal blocks, but this time the blocks must have standard sizes
and positions (powers of 2). Since the array was assumed to be
2n-by-2n. the tree height is at most n. This method of region
representation was proposed by Klinger [6-7];:; it has also been
used for image representation (e.g., [8~11]). It is relatively
compact, and is also well suited to operations such as union and

intersection, and to detecting various region properties. A

* The gquadtree region representation described here should not
be confused with the quadtree representation of two-dimensional
point data introduced by Finkel and Bentley [5].




recent Ph.D. thesis by Hunter [12] in the domain of computer

graphics develops a variety of algorithms for the manipulation

of guadtree region representations. Those algorithms, however,
allow a node to store the list of coordinate points that describe

the polygon from which the guadtree was constructed.

Since the guadtree and border representations both have compu-
tational advantages, it is of interest to develop methods of
converting from one representation to the other. We shall now
present an algorithm for deriving a clockwise boundary code from

the quadtree representation of a given region.




2. Definitions and notation

Let each node in a gquadtree be stored as a record containing
six fields. The first five fields contain pointers to the node's
father and its four sons, labeled NW, NE, SW, and SE. These
items will be referenced as FATHER(P), NWSON(P), NESON(P), SWSON(P),
and SESON(P), respectively, for a given node P. The sixth field,
named NODETYPE, describes the contents of the block of the array
which the node represents, i.e., WHITE if the block contains no
pixels in the region, BLACK if the block contains only pixels in
the region, and GRAY if it contains pixels of both types.

Let the four sides of a node's block be called its N, S, E,
and W sides. Two nodes are said to be adjacent along the N side
of the first, for example, if the pair of blocks represented by
these nodes touch along tnat side (not just at a corner). Given this
notation for a node's sides and quadrants, as illustrated in
Figure 2, we now define several functions which conveniently
describe the geometry of these¢ labelings. Throughout this paper,
we use T and U as side variables, K and L as quadrant variables,
and P, Q, X, Y, and Z as node variables.

Define CSIDE(T) to be the side which is adjacent to side T
in the clockwise direction, e.g., CSIDE('N') = ‘E'. Similarly,
define CCSIDE(T) and OPSIDE(T) to be the sides which are adjacent
in the counterclockwise direction and on the opposite side from
T, respectively. For example, CCSIDE('N') = 'W' and OPSIDE('N')
= 'S'. The value of the boolean function ADJ(T,K) is true if
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and only if quadrant K is adjacent to side T of the node's block,
e.g9., ADJ('N','NW') = true.

Define REFLECT(T,K) to be the guadrant in which guadrant K
lies after being reflected about the side T axis. For example,
REFLECT('W','NE') = 'NW' and REFLECT('N','NW') = °'SW'. QUAD(T,U)
is defined to be the quadrant which touches the corner formed by
sides T and U (if T and U are opposite sides, the function is
undefined), e.g., QUAD('E','N') = 'NE'. LINK(T) returns the
chain code direction associated with side T, If we are using
the coding described in Section 1, this implies LINK('N') = 0,
LINK('W') = 1, LINK('S') = 2, and LINK('E*) = 3.,

It is also convenient to be able to access certain properties
of a node concisely. Therefore, define SONTYPE(P) to be the
quadrant type of P relative to P's father, e.g., SONTYPE(P) = 'NW'
iff NWSON(FATHER(P)) = P. Let SON(P,K) be the Kth son of node P,
where K is a guadrant. For example, SON(P,'NW') = NWSON(P).

; Finally, define DEPTH(P) to be the length of the path from node
P to the root of the quadtree, TREEDEPTH to be the maximum depth

of any node in the quadtree, and LEVEL(P) to be TREEDEPTH-DEPTH(P).
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2. Definitions and notation

Let each node in a gquadtree be stored as a record containing
six fields. The first five fields contain pointers to the node's
father and its four sons, labeled NW, NE, SW, and SE. These
items will be referenced as FATHER(P), NWSON(P), NESON(P), SWSON(P),
and SESON(P), respectively, for a given node P. The sixth field,
named NODETYPE, describes the contents of the block of the array
which the node represents, i.e., WHITE if the block contains no
pixels in the region, BLACK if the block contains only pixels in
the region, and GRAY if it contains pixels of both types.

Let the four sides of a node's block be called its N, S, E,
and W sides. Two nodes are said to be adjacent along the N side
of the first, for example, if the pair of blocks represented by
these nodes touch along tnat side (not just at a corner). Given this
notation for a node's sides and quadrants, as illustrated in
Figure 2, we now define several functions which conveniently
describe the geometry of these labelings. Throughout this paper,
we use T and U as side variables, K and L as quadrant variables,
and P, Q, X, Y, and Z as node variables.

Define CSIDE(T) to be the side which is adjacent to side T
in the clockwise direction, e.g., CSIDE('N') = 'E'., Similarly,
define CCSIDE(T) and OPSIDE(T) to be the sides which are adjacent
in the counterclockwise direction and on the opposite side from
T, respectively. For example, CCSIDE('N') = 'W' and OPSIDE('N')
= 'S'. The value of the boolean function ADJ(T,K) is true if
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For example, the three cases shown in Figure 3 are treated as

follows:

a)

b)

c)

In this case X cannot extend beyond P, though it may be
bigger than Q. If X is black, the new pair is (X,Q), the
boundary turns left, and the new link is the west side

of Q (if X is larger than Q) or the east side of X
(otherwise). If X is white, the new pair is (P,X), the
boundary does not turn, and the new link is the north
side of X. See Figure 4a-b.

In this case X cannot extend beyond Q, though it may be
bigger than P. If X is black, the new pair is (X,Q), the
boundary does not turn, and the new link is the south
side of X. 1If X is white, the new pair is (P,X), the
boundary turns right, and the new link is the west side
of P (if P is no larger than X) or the east side of X
(otherwise). See Figure 4c-d.

Assume that the region is 4-connected, so that blocks
touching only at a corner are not regarded as adjacent.
Then if both X and Y are black (they need not be distinct
nodes), the new pair is (Y,Q), the boundary turns left,
and the new link is the east side of Y(if X and Y are
distinct and Y is no bigger than Q) or the west side of
Q (otherwise; note that if X and Y are the same node,

Y must extend at least to the end of Q because neighboring
nodes can't properly overlap.) If X is black and Y is

white, the new pair is (X,Y), the boundary does not turn,

i e it M#-}, © A————— e ——_— p——
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and the link is the south side of X (if X is no larger
than Y) or the north side of Y (otherwise). If X is
white, the new pair is (P,X) regardless of the node
type of Y by virtue of the 4-connectedness property.
The new link 1s the west side of P (if P is no bigger
than X) or the east side of X (otherwise); the boundary
turns right. See Figure 4e-i. Alternatively, we could
specify a similar set of rules if we considered the

region to be 8-connected.
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4. Formal statement of the algorithm

The following ALGOL-like procedures specify the complete
boundary following algorithm. The main program finds and marks
the initial (black, white) pair of nodes. NEXT _LINK is the
recursive algorithm which outputs the link associated with the
current pair, and then finds the next pair. Algorithm FIND
NEIGHBOR is used to find the adjacent nodes X and Y. OVERLAP
determines which of the three cases shown in Figure 3 applies

to the current pair.
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comment given quadtree QUADTREE, find a black node P which
is on the region boundary and has no black nodes adjacent
to its north side. Q, a white node, is the western-most
of P's northern neighbors. The pair (P,Q) defines the
initial chain segment;
node P,Q:
P +« ROOT (QUADTREE);
while NODETYPE(P) = 'GRAY' do
if NODETYPE (NWSON (P) ) ¥ 'WHITE'
then P+NWSON (F)
else if NODETYPE (NESON(P))¢'WHITE'
then P<NESON (P)
else if NODETYPE (SWSON(P) )¢ 'WHITE'
then P+SWSON (P)

else P+SESON(P);
Q « FIND NEIGHBOR (P,'N','W');
Mark (P,Q) as starting pair;

NEXT_LINK (P,Q,'N")

end




procedure NEXT LINK (P,Q,T):

begin

comment given adjacent leaf nodes P, Q, where P is black, Q is
white, and side T of P touches Q, output the chain

description for this section of the boundary;

node P,Q,X.Y,2; side T; integer 1i;

if (P,Q) is the marked starting pair and we've seen it
before then halt;
for i+l step 1 until ZHIN(LBVEL(P).LEV!L(Q))

do print (LINK(T)):

comment determine next pair of nodes and their common side
and recursively call NEXT LINK;

Z+OVERLAP (P,Q, CSIDE(T));

if 2=P

then begin

comment Black overlaps white;

X+<FIND NEIGHBOR (Q, CSIDE(T), OPSIDE(T));:

| if NODETYPE(X) = 'WHITE'

then NEXT_LINK (P,X,T) /*Figure 4a*/
else NEXT _LINK (X,Q, CCSIDE(T)) /*Figure 4b*/
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else if z=Q
then begin
comment white overlaps black:
X+FIND NEIGHBOR (P, CSIDE(T),T):
if NODETYPE(X) = 'WHITE'
then NEXT LINK (P,X, CSIDE(T)) /*Figure 4c*/
else NEXT LINK (X,Q,T) /*Figure 4d*/
an :
else begin

comment Black and white aligned;

X+FIND NEIGHBOR (P, CSIDE(T),T);
if NODETYPE(X) = ‘WHITE'
then NEXT LINK (P,X, CSIDE(T)) /*Figs. de and 4q*/
1 else begin
Y+FIND NEIGHBOR (Q, CCSIDE(T).T):

if NODETYPE(Y) = *BLACK®

then NEXT LINK (Y,Q, CCSIDE(T)) /*Figs. 4f,4i%/
else NEXT LINK (X,Y,T) /*Figure 4h*/

end




procedure FIND NEIGHBOR (P,T,U):

begin

comment Given node P, return node Q which is adjacent to side
T of P and touches P's TU corner;

node P,Q; side T,U;

Q«P;

STACK+«empty

while ADJ(T,SONTYPE(Q)) do o |

begin
comment find the nearest common ancestor of P and Q;
push SONTYPE(Q) onto STACK;
Q+FATHER(Q) ;
end;
Q+SON (FATHER(Q), REFLECT (T, SONTYPE(L,)):
while NODETYPE(Q) = 'GRAY' do
begin
comment follow reflected path back down tree to locate
neighbor., If STACK is empty, then Q is smaller than P; |
if STACK not empty |
then begin Q+SON (Q, REFLECT(T, top(STACK))):
J pop STACK
| end
| else Q+SON (Q, QUAD(OPSIDE(T),U))
end:

return (Q)

end
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procedure OVERLAP (P,Q,T):

begin

comment given two nodes P and Q which touch along a side U, where
CSIDE(U)=T, determine whether P extends farther in the
T direction than Q (return P), Q extends farther than P
(return Q), or both their Tth sides are aligned

(return 0):

node P,Q,Lo,Hi; side T; integer Dp, Dg, Diff, i;

Dp = DEPTH(P);

Dg = DEPTH(Q):
if Dp=Dq then return (0);

>
-

MAX (Dp,Dg) = Dg
then begin Lo+P; Hi+Q end else begin Lo+Q; Hi+P end
Diff« [ Dp-Dg|

comment The smaller of the two nodes cannot extend farther than

the other because this would imply that P and Q

properly overlap, which is impossible. At best the
smaller node can be aligned with the other one, and this
occurs if and only if the smaller node is at the extreme
T side relative to the nearest common ancestor of P and Q;

for i+l step 1 wuntil Diff do

begin
if ADJ (T,SONTYPE(Lo)) then return (Hi):
Lo*FATHER (Lo)
end;
return (0)
end




5. An example
Let us consider the guadtree shown in Figure 1. Notice

that this quadtree has 57 nodes whereas an array representation
would have required a 16 by 16 (=256-cell) logical array. The
main program finds the initial pair (19,13) and then calls

NEXT _LINK to do the boundary following from this point. Table
1 specifies the arguments of NEXT LINK at each recursive call

along with the link output as a result of this pairing.
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Black node P white node Q Side T Link output
19 13 N ol
14 13 1}
14 2 N ol
14 15 E 31
21 15 N 0!
16 W 13
1¢ 9 N ol
10 9 W !
10 7 N ol
10 B I 3]
1o ) N 02
16 17 E 34
29 30 E 3!
29 34 . 21
23 33 > 21
27 32 21
27 b W ll
1¢ 6 3 21
P4 26 I 3
2 3] E 34
25 35 E 3l
ig 39 N '\71
18 19 ¥ 33
18 42 S 2}
25 41 s 2*
25 24 W 4
22 11 W 12
22 18 N ol
19 R | W g !
19 13 N -

Table l. Sequence of calls of NEXT LINK for quadtree in Figure 1.
The exponent on the output indicates the number of unit
length links associated with the boundary specified by
the given (P,Q) pair. 1
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6. Analysis
The speed of this boundary coding algorithm is determined by

the procedure NEXT LINK which is called for eacii boundary segment
associated with a (black, white) adjacent node pair. The time
required to output the individual links is proportional to the
region's perimeter, where perimeter is defined to be the number
of unit-square pixels on the region's boundary (not the number

of black nodes which are adjacent to white nodes). The additional
cost of the algorithm is determined by the calls to procedures
OVERLAP and FIND NEIGHBOR. Given a pair (P,Q) of adjacent black,
white nodes, each procedure is called once in order to find the
next pair. The time required is measured by the number of nodes
visited and depends on the relative positions of P and ¢, and
adjacent nodes X and Y in the quadtree.

Procedure OVERLAP takes time proportional to the sum of the
depths of nodes P and Q in the quadtree, although this can be
reduced to the sum of the path lengths to their nearest common
ancestor. Further refinements can be made based on the relation-
ship between P and Q so that OVERLAP doesn't need to be called
for each call to NEXT_LINK. For example, having determined that
P extends beyond Q and X is smaller than Q (which we can detect
while searching for X), then the new pair is related either by
case a or b (cf. Figure 4) according to whether X is white or

black respectively.
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Procedure FIND NEIGHBOR must be called for each boundary

j segment defined by a (black,white) node pair. Consider, for
example, the call X<FIND NEIGHBOR(P,T,U). The time required

is equal to the sum of the path lengths from nodes P and X to
their nearest common ancestor. Thus in the worst case a single
call will take height of the guadtree time. We now analyze the
average case.

? In a complete gquadtree of height n there are 22"-2" leaf

nodes which have east neighbors. Of these neighbor pairs =

have their nearest common ancestor at level n, 2:2" at level n-1,

5 ceee2™igh o P teovel 1,0.., and 2%

at level 1. For
example, in Figure 5 nodes corresponding to squares l1-8 have
eastern neighbors 1'-8' and nearest common ancestors at level 3;
nodes for squares 9-24 have eastern neighbors 9'-24' and nearest

g common ancestor at level 2. (These same frequencies also occur

i for each of the other sides north, south and west.) Therefore,

: if we assume that P and X are both in lewl 0 and P is equally

n possible positions, then the

likely to occur at any of the 2
average time required by FIND NEIGHBOR is
((@®2m + (2™L2(n-1)) & - ¢ (22 220) eee @2y Y
n

L 2i/(2Y)
=1

= (2n+1_(n+2))/2n-1
< 4
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That is, P and X's nearest common ancestor is on the average
at level 2,

when P and X are both at level k, k>0, a similar argument
shows that on the average only a constant amount of time is
required for each call to FIND NEIGHBOR. In general, if P is
at level j and X is at level k, then the average time is equal
to |j-k|+4.

The average total time required by all calls to FIND NEIGHBOR,
and consequently NEXT LINK, depends on the expected disparity
in the sizes at leaf nodes which are adjacent to leaf nodes of
the opposite type. If all leaf nodes are at level 0, for example,
then the averace total time to traverse the entire boundary is
O(number of black boundary nodes). Further analysis would require
knowledge of expected region shapes and positions and is beyond

the scope of this paper.
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7. Concluding remarks

An algorithm has been presented for converting the quadtree
representation of a simply-connected region into the chain code
description of the region's boundary. The boundary traversal
time is linear in the number of boundary nodes in the juadtree
when certain plausible assumptions are made about the form of
the quadtree.

In the case where a region may have holes, we may extend
the algorithm by simply adding a quadtree traversal procedure
which systematically visits all black nodes upon completion of
the first boundary following sequence. 1f that scan discovers a
black boundary node having a boundary edge which was not marked
by the boundary follower, then the scan is temporarily interrupted
so that the boundary of which it is a part can be followed.

There are a number of other problems concerned with gquadtrees
which are of interest in establishing their applicability for
efficiently operating on areal data. The algorithm given here
assumes a single connected region; an efficient algorithm for
determining the connectivity of the black nodes would be of con-
siderable value. Another important extension of this work is
to consider the converse operation of constructing the quadtree
from the chain code of a region; this will be the subject of a

subsequent paper.
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a. Region. b. Block decomposition
of the region in (a).
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12131819141520216 7 9 102627 31322829 3334 353638 39

€. Quadtree representation of the blocks in (b).

Figure 1. A region, its maximal blocks, and the corresponding
quadtree. Blocks in the region are shaded, background
blocks are blank.
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Figure 2. Labeling of a block's four quadrants and
four sides.
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Figure 3. Possible overlap relationships between the
(black,white) adjacent node pair (P,Q). The
heavy arrow indicates the boundary segment
just output.
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Figure 4.

Possible configurations of P, 0 and their neighbor
blocks in determining the next (black,white) pair.
Arrows indicate the boundary segments associated
with the old and new pairs.
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Illustration

of nearest neighbor computation.
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There has been recent interest in the use of guadtrees to
represent regions in an image. It thus becomes desirable to
develop efficient methods of conversion between gquadtrees and
other types of region representations. This paper presents an
algorithm for converting from quadtrees to a simple class
of boundary codes.
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